Synthesis and high temperature thermoelectric properties of Yb0.25Co4Sb12-(Ag2Te)x(Sb2Te3)1−x nanocomposites
نویسندگان
چکیده
Nanocomposites are becoming a new paradigm in thermoelectric study: by incorporating nanophase(s) into a bulk matrix, a nanocomposite often exhibits unusual thermoelectric properties beyond its constituent phases. To date most nanophases are binary, while reports on ternary nanoinclusions are scarce. In this work, we conducted an exploratory study of introducing ternary (Ag2Te)x(Sb2Te3)1-x inclusions in the host matrix of Yb0.25Co4Sb12. Yb0.25Co4Sb12-4wt% (Ag2Te)x(Sb2Te3)1-x nanocomposites were prepared by a melting-milling-hot-pressing process. Microstructural analysis showed that poly-dispersed nanosized Ag-Sb-Te inclusions are distributed on the grain boundaries of Yb0.25Co4Sb12 coarse grains. Compared to the pristine nanoinclusion-free sample, the electrical conductivity, Seebeck coefficient, and thermal conductivity were optimized simultaneously upon nanocompositing, while the carrier mobility was largely remained. A maximum ZT of 1.3 was obtained in Yb0.25Co4Sb12-4wt% (Ag2Te)0.42(Sb2Te3)0.58 at 773 K, a ~ 40% increase compared to the pristine sample. The electron and phonon mean-free-path were estimated to help quantify the observed changes in the carrier mobility and lattice thermal conductivity.
منابع مشابه
Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.
To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could ...
متن کاملتأثیر آلاینده خنثای Ca-La بر روی خواص ترابردی و ابررسانایی ترکیب 123-Nd
Polycrystalline samples of Nd1-xCaxBa2-xLaxCu3O7-δ (with 0.0 ≤ x ≤ 0.15) were prepared by the standard solid state method. The transport and superconducting properties have been studied by the resistivity and thermoelectric power measurements as a function of temperature and doping concentration. With increasing doping concentration, the resistivity was increased and thermoelectric power was c...
متن کاملبررسی تغییر ساختـار بلورین (Bi2Te3)0.25 (Sb2Te3)0.75 با درصـد وزنـی Te افـزوده به وسیلـهی AFM, EBSD و XRDو ارتقای عدد شایستگی بلور
(Bi2Te3)0.25(Sb2Te3)0.75 solid solution is a p type thermoelectric compound with optimum efficiency among the (Bi2Te3)x (Sb2Te3)1-x compounds with variable x. Increment of Bi2Te3 segment in the Bi-Sb-Te system decrease in hole concentration, which result in carriers transport tuning, an increment of Seebeck coefficient and decrement of electrical and thermal conductivities. An excess of Telluri...
متن کاملChemical synthesis of anisotropic nanocrystalline Sb2Te3 and low thermal conductivity of the compacted dense bulk.
We describe a one-step, one-pot non-aqueous route for the synthesis of Sb2Te3 nanocrystals with hexagonal shape and highly anisotropic nanostructures. The as-prepared nanostructures were characterized by XRD, TEM and HRTEM. The effect of the stabilizers on the nanocrystal morphology has been discussed in detail. We have studied the thermal conductivity of the compacted bulk from the Sb2Te3 nano...
متن کاملFabrication and characterization of (Bi2Te3)0.2(Sb2Te3)0.8 compounds thin films by flash evaporated deposition
Bi2Te3)0.2(Sb2Te3)0.8 compounds thin films on glass substrates are fabricated by a flash evaporated deposition method. In order to enhance the performance of the thin films, annealing in an argon atmosphere is carried out for 1 hour in the temperature range from 200 to 400 C. The structure of the thin films, in terms of homogeneity and crystalline quality, is investigated by means of x-ray mapp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015